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Abstract 
Darwin derived a system of difference equations 
which relate the incident and reflected amplitudes of 
X-rays in a crystal in Bragg diffraction. These 
equations are recast in matrix form. Using a well 
known result from optical multilayer theory, an exact 
analytic solution of these difference equations i s  
obtained for a crystal of an arbitrary number of atomic 
planes. In the limiting case of a semi-infinite crystal, 
and with the appropriate approximations, Darwin's 
expression for the reflectivity of a crystal in Bragg 
diffraction is obtained. 

Introduction 

To treat the diffraction of X-rays from perfect crystals, 
there have historically been two dynamical diffraction 
theories. One is the elegant mathematical theory intro- 
duced by Ewald (1916, 1917) and extended by von 
Laue (1931, 1940). The other is the simpler 
phenomenologicM theory introduced by Darwin 
(1914) and modified by Prins (1930). Because it is 
simpler, the Darwin-Prins formulation was at first 
favored over the Ewald-von Laue theory. However, 
with further work, the Ewald-von Laue theory was 
able to account for many phenomena, such as the 
Borrmann effect (Borrmann, 1950; von Laue, 1949), 
which could not be explained with the Darwin-Prins 
theory. Part of this had to do with the methods used 
to solve Darwin's difference equations. We present 
here an exact solution to Darwin's difference 
equations for a perfect crystal of any thickness using 
a matrix formulation. Berreman (1976) introduced 
the concept of solving the diffraction problem for the 
symmetric Bragg case using a matrix formulation. 
However, he did not apply his formulation to Dar- 
win's difference equations. The method may also be 
extended to Borie's difference equations for Laue 
diffraction (Boric, 1966), and to the difference 
equations for asymmetrical reflection (Warren, 1969). 

A future paper will use the results of this paper to 
show the theoretical relationship between the 
Darwin-Prins and Ewald-von Laue formulations of 
dynamical diffraction. 
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Darwin's difference equations 

We consider here the formulation of Darwin's differ- 
ence equations as given by James (1965). Fig. 1 is 
similar to Fig. 24 of James. The horizontal lines rep- 
resent planes of atoms parallel to the surface of a 
perfect crystal. The planes of atoms are numbered 
starting with the surface plane. The atomic planes are 
separated by a thickness of vacuum a. It is assumed 
that there are N atomic planes in total. To represents 
the amplitude of a beam of plane X-rays incident on 
the crystal. So represents the amplitude of the reflected 
X-rays. Tr and & represent the amplitudes of the 
forward and reverse propagating waves, respectively, 
of a beam of X-rays at the rth plane. The glancing 
angle of incidence is 0. The atoms in each plane are 
assumed to scatter in phase so that & is a plane wave 
whose angle is also 0 relative to the atomic planes. 

We define the reflection coefficient for a single 
plane of atoms to be - iq ,  the transmission coefficient 
through the plane of atoms to be 1 - iqo, and the phase 
change for a wave travelling the distance a between 
two successive planes to be ~ = (2fro/A)sin 0. The 
wavelength of the X-rays is A. The reflection 
coefficient for a plane of atoms is given by 

nh e 2 

q =  sin 0 mc 2f(EO)P(20)' (1) 

where n is the number of atoms per unit area in the 
plane, f (2  0) is the atomic scattering factor, and P(2 0) 
is a polarization factor. P(20) is equal to unity for 
g-polarized waves and cos (20) is equal to unity for 
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Fig. 1. Diffraction from a set of atomic planes. 
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7r-polarized waves. The other symbols have their 
usual significance. Although a lattice of one kind of 
atom is considered here, the results are easily general- 
ized in the usual manner of replacing the atomic 
scattering factor by an appropriate structure factor. 

The waves at the rth plane are related by 

S~ = -iqT~ +(1 - iqo) e-'~Sr+~, (2) 

T~+t = (1 - iqo) e-'~T~ - i(l e-2i'PSr+l, (3) 

where t~ is the reflection coefficient from the lower 
side of an atomic plane and may be, but is not 
necessarily, equal to q. Equation (2) says that Sr is 
composed of two parts: the part of T~ that is reflected 
from the rth layer and the part of S~+~ that is transmit- 
ted through the rth layer. Equation (3) is interpreted 
similarly. Equations (2) and (3) are known as Dar- 
win's difference equations. 

Solution 

The primary quantity of interest is the reflectivity of 
X-rays from a crystal, 

I (So~ 2, 
R=~=\ -~oo]  (4) 

where R is the reflectivity and I0 and I are the incident 
and reflected intensity, respectively. Darwin (1914) 
found an approximat6 expression for the ratio (So/To) 
by assuming a form of the solution for an infinite 
crystal. Later he (Darwin, 1922) found an approxi- 
mate solution for a finite number of layers. Henke 
(1981) has also found a solution for a finite number 
of layers. There may be others reported in the 
literature. 

We present here an exact solution to (2) and (3). 
The method of solution used the fact that (2) and (3) 
may be rewritten in matrix form as 

1 

Sr - (1- - iq0)  

[ e '~ ,0e -'~ ] [ ~ + , ]  (5) × 
- q e  '~' [ (1- iqo)2+qq]e  -'~' t_Sr+, ' 

which, for convenience, we write as 

= St+t j" (6) 

It is apparent from this that the amplitudes of the 
waves at any two lattice planes are related by a power 
of the 2 x 2 matrix in (5) and (6). If there are N total 
planes of atoms in the crystal then the relation 
between the incident, reflected and transmitted wave 
is 

Here T denotes the amplitude of the transmitted 
wave. The 2 x 2 matrix in question, A, is unimodular 
(i.e. its determinant equals unity). 

A unimodular matrix raised to a power N is related 
to Chebyschev polynomials of the second kind 
(Abel6s, 1950; Born & Wolf, 1959; Knittl, 1976). If 
we define a matrix B, 

.[: 
such that 

~], (8) 

det B = 1, (9) 

then B N may be written as follows; 

BN = [aUN_,(x)- UN-2(x) bUN_,(x) ] 
cUN_,(x) dUN_,(x)- UN_2(x)J" 

(10) 

Here UN(x) are the Chebyschev polynomials of the 
second kind, 

sin [ (N - 1) cos-~ x] 
UN(x) = (1 _x2),/2 , (11) 

x = ( a + d ) / 2 .  

If x >  1, then hyperbolic functions must be used 
(Knittl, 1976). This result is well known in optical 
multilayer work (Abel6s, 1950; Born & Wolf, 1959; 
Knittl, 1976). 

In our case, we combine (7), (10) and (11) and 
obtain the coefficient of reflection, 

So 
-~oo= - i q /  { 1 -  ( 1 -  iqo) e -'~ 

×sin [ ( N - 1 ) c o s  -1 x ] / s i n [ N c o s  -I x]} (12) 

and the coefficient transmission, 

T 
- - =  (1 - x2)~/2(1 - iqo)/{e i~ sin (N  cos-tx) 
To 

- ( 1 - i q o )  s i n [ ( N - 1 ) c o s  -~ x]}, (13) 

where now 

e '~ +[(1 - iqo) 2 + ~q] e -'~ 
x =  (14) 

2(1 - iqo) 

Equations (12) and (13) are exact solutions of 
Darwin's difference equations [(2) and (3)] for any 
number of atomic layers. 

Derived next is the expression for the coefficient 
of reflection for a thick crystal. It will be shown to 
reduce to Darwin's result for an infinite crystal using 
the appropriate approximations (James, 1965). To do 
this one needs to consider the following term from 
(12) in the limit as the number of layers in the crystal 
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goes to infinity: 

sin [ ( N -  1) cos -l x] 
lim 
N-,oo sin [N  cos -l x] 

This may be rewritten as 

(15) 

lim { x - ( 1  - - x 2 ) l / 2 c o t [ N c o s - I  x]}. (16) 
N ~ o o  

It is convenient for the analysis to write cos-~ x with 
real and imaginary parts 

cos -l x = a +ifl. (17) 

Then we need to examine 

lim cot [ N  cos -~ x] 
N ~ o o  

eiN(a+ifl ) +e-iN(a+ifl) 1 
= N-~lim i e i N ( a + i f l  ) _ e_iN(~+ifl----~j , 

+i, f l < 0  
= - i ,  f l>O"  (18) 

Therefore, for an infinite crystal, 

R =  I / I o  = - i q / { 1 - ( 1 - i q o ) [ x  + i ( 1 - x 2 )  I/2] e '~} 2. 

(19) 

This is an exact solution of Darwin's  difference 
equations for an infinite crystal. To investigate the 
form of  this about a Bragg peak, write 

= (27ra/A) sin 0 = mTr + v, (20) 

where v is small. It may then be shown, for small v, 
that (19) reduces to 

R =  I / Io~- - ] -q / [qo+v+(qo+V2)~ /2 -F tq]]2 .  (21) 

This is identical to equation (2.75) of  James (1965) 
and is Darwin's  result for the reflectivity of an infinite 
crystal near a Bragg peak. 

Discussion 

We have presented here an exact solution to Darwin's  
difference equations for any number of  atomic planes 
in a crystal. An exact expression for the reflectivity 
of X-rays from an infinite crystal has been derived. 

This solution has been shown to simplify to Darwin's  
result. The key for doing this is to rewrite Darwin's  
difference equations in matrix form and then apply 
results from optical multilayer theory. 

The method of solution presented here is extend- 
able to other difference equations. We have used it 
to obtain exact solutions to Borie's difference 
equations for Laue diffraction and the Borrmann 
effect (Borie, 1966). We have used it, as well, to obtain 
exact solutions to the difference equations for asym- 
metrical Bragg reflection (Warren, 1969). 

The matrix form [(5)] of Darwin's  difference 
equations has been used to demonstrate the relation- 
ship between the Ewald-von Laue dynamical diffrac- 
tion theory and the Darwin-Prins theory. This will 
be the subject of a future paper. 

Many people are familiar with the treatment of the 
Ewald-von Laue dynamical diffraction theory given 
by Zachariasen (1945). Upon the recommendation of  
one of  the referees, the work presented here will also 
be related to the results of  the Ewald-von Laue theory 
as given by Zachariasen. 
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